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Outline of the presentation

e Brief introduction on canonical quantum gravity and
quantum cosmology.

e We shall pick up EH gravity theory along with a scalar
field and cosmic matter part present in it.

e We also consider an anisotropic cosmological model.
e We shall describe Schutz’s formalism for the matter sector.
o Wheeler-DeWitt quantization.

e Restoring the unitarity.



e Gravity is the geometry of curved space-time.
e Mass-energy curves the space-time.

e Free mass moves on straight paths on curved space-time.

Quantum theory of gravity essentially means quantum the-

ory of space-time geometry.

e [s this possible to test quantum gravity in laboratory?

E, = /hC5/G ~ 10Y9GeV

e Cosmological laboratory.
e Removing the Big-Bang singularity.
e Understanding the birth of the universe.



The starting point of quantum gravity is the Hamiltonian
formalism of gravity.

ADM formalism : Space and time separation (3 + 1 split).

ADM decomposition of the metric g, is

_ (~N24N,N® NV
L2 Ny Wty

where N is lapse function, IV, is shift
vector and h,p is induced metric on the
3-d hypersurface foliated at fixed time.
Superspace : The space of 3-geometries. (J. A. Wheeler &
B. S. DeWitt )

Quantum cosmology is performed on finite dimensional
mini-superspace.
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Let us start with the action

A= / d*z\/—g [R — F(¢)gwaﬂ¢ay¢] +2 v hhi KV
M oM

+ /M dioy=gP (1)

e R is the ricci scalar with the metric g, .

e Second term is a non-linear self-coupling scalar field
minimally coupled to gravity.

e The second integration term is the GHY term where h;;
and K are the induced metric and extrinsic curvature of
the fixed time sliced hypersurface respectively.

e P is the pressure of the cosmological fluid.
Reference - Babak Vakili, Phys. Lett. B 688 (2010) 129.
J. Socorro, M. Sabido, M.A. Sanchez, M.G. Frias Palos, Rev. Mex.
Fs. 56 (2) (2010) 166171.




e Here we shall consider the cosmic matter as a perfect fluid
obeying EoS
P=wp.
p being the density of the fluid.
In Schutz’s formalism one can cast fluid’s four velocity

vector in terms of four potentials h, e, 0 and S in the
following way

wy = %(&,e +60,9) (3)

where h is the specific enthalpy and S' is the specific
entropy. The other two potentials 6§ and € are irrelevant
physically.

e Normalozation condition reads
uu’ =1 .

Reference - B. F. Schutz, Phys. Rev. D 2 (1970) 2767.
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e Now the cosmic fluid pressure P in terms of the specific
enthalpy h and specific entropy S reads

w 14+1/w —S/w
(1 _|_w)l+l/w ¢ ’ (5)

e COSMOLOGICAL MODEL : Here we take up Bianchi I metric
which is given by

ds® = N?(t)dt* — A*(t)da” — B*(t)dy* — C*(t)dz*  (6)

where N(t) is called the lapse function and A(t), B(t), C(t)
are three functions of the cosmic time ¢.

Reference - B. F. Schutz, Phys. Rev. D 4 (1971) 3559.
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e The Ricci scalar for this metric is given by
_9 .. .. L.
R= [NABC + B (NAC + NAC - NAC) +

O{N(BA+AB+AB')—N(BA+AB)H )
where the dots denote derivative with respect to time ¢.

e The gravity sector of the action along with the scalar field
can be written down upto a constant volume factor as

s, / it [JQV(ABC L BOA+CAB) - Wﬂ

/ dt Ly . (8)

e Once the Lagrangian for the gravity part is identified, we
can proceed to find out the Hamiltonian for the gravity
sector.




e We make the following transformations

At) = Lot 2 +V32-

B(t) = (",Z‘”LZ**\&Z,
C(/) — (,?Z()*QZJr (9)

where Zy(t), Z4(t), Z_(t) are the new variables that we
shall work with instead of A(t), B(t), C(t).

e The Hamiltonian for the gravity sector therefore reads

1 1

S Ne3%0(p2 _ 2 _p2)— ——__Ne3%0p2 (10
where po, py,p— and py are the canonical momenta
conjugate to Zy, Z4, Z_ and ¢ respectively.

Reference - F. G. Alvarenga, J. C. Fabris, N. A. Lemos, G. A.
Monerat, Gen. Relativ. Gravit. 34 (2002) 651.

H,=—
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e With respect to a comoving observer, the fluid four velocity
vector takes the form u, = (NN, 0,0,0). Using eq.(s)(3), (4),
we obtain )

e+ 065
h = . 11
= (1)

e Substituting / in eq.(5) leads to the form of the matter
sector of the action (1) which upto a volume factor reads

S /dt [N(t)l/wewo
/ dt Ly . (12)

(T ooy (€ 08) e

e The Hamiltonian for the matter sector can be obtained as

Hm — Ne—wZop(:-i-leS




e One can recast the Hamiltonian for the matter sector in a
more tractable form. For that one needs the canonical
transformations

, =S, —(w+1

= pse “p, W
= pf“e‘*

ps

€ = e—(w+1)—
Pe

De = De -

e The Hamiltonian for the matter sector now becomes

H,, = Ne_3zoe3(1_‘”)Z°pT (15)

where pr is the canonical momentum conjugate to the
variable T" which can be considered as the new cosmic time.

Reference - V. G. Lapchinskii, V. A. Rubakov, Theor. Math.
Phys. 33 (1977) 1076.
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e The Hamiltonian for the full theory takes the form

H=H,+ H,

P?s 4 B0,

(16)

PP IR

The gauge choice N = ¢3“%0 makes the new canonical
variables (T, pr) decouple from the gravity sector. So the
new set of spacetime coordinates are (Zy, Zy,Z_,T).
QUANTIZATION OF THE MODEL : To get the WD equation,
we first replace the momenta appearing in the Hamiltonian
(16) by their quantum mechanical operator representations,
namely,

Po = ZaZO Py = i%, p_ = —ia%, Dy = —ia% and
pr = —1 6‘9T respectively (setting i = 1).




e The WD equation then reads

HY(Zy, Zy, Z_,T) =0 (17)

where
02 02 02 A9 -
po| L 90 O 1 O s-wznd
0Z3 0Z% 9Z%  AF(¢) 0¢? oT
(18)
e We shall now consider a stiff fluid for which w = 1. The
WD equation then reduces to

O’ 0*V 82\I/+ 1 82\11_24,@
072 0z2  07Z ' 4F($) 09> OT

e We now make the following ansatz to solve (19)

U(Z,¢,T)=e F1T0(Z,¢), 2= (2o, 2,7 .
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This yields )
HP =24EP (21)

where

0? ok 0? 1 o

=52 022 0z Tir@) a8

(22)

HERMITICITY : To construct a well behaved wave function
the operator H has to be a self-adjoint operator. That is
we must have

(HD1, By) = (D1, Hdo) . (23)

We define the inner product between any two wave
functions ®; and ®5 in the following way

(@1, B2) = / (2, ) F () (Z, §) dZdo .




e BOUNDARY CONDITIONS : &y = 0, 3('4)) =0 at Zy = +.
The conditions are same for Z,,7Z_ and ¢ except for ¢ the
end points are 0 and oc.

e We apply the separation of variables and the partial
differential equation (21) decouples to the following second
order differential equations

d’n(¢
I 1)) = 0 (250)

d*¢ (Z4)
72

d*¢_(7-)
az?

+ K364 (Z4) =0 (25b)

+K%¢.(Z_)=0 (25¢)

d*¢0(Z)
172

+ (K2 + K? — k% — 24E)&(Z0) = 0 .
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e Assume F(¢) = 3¢™, (m # —2,\ > 0) along with the
boundary conditions the solutions of (25) lead to the total
wave function of the form

U(Z,¢,T)= COCJFC_Cm’,\K;m%rZqﬁée_iK*Z*e_iK*Z*e_iKOZO

m+2
x e BTy | (M) (26)

m+2 m+ 2

where

11 1
Crn,) = co(m +2)” m2 \2m3a [ <1+—m+2) :

We now proceed to construct a wave packet using the
superposition principle in the following way

Wy — / w5 Ve BRI 46 (7 6 T drd Kod K 4 dK .




e Important note :

K§ = K3 + K2 — k* — 24FE (28)

e With this wave packet, we calculate its norm. This reads

1 (CoCiC-Crr\2 ([ 7\
ol =5 () (5) - @

2y
e So now the normalized wave packet becomes

8v/24
(o C"Y+ C_ (f"ym,,)\

\\/J wp =

' 1 (K24 K2 '2 4 o2 -
/H,Q Ve (K§+KL+KZ 4+ hI’(Z,(f),l)

drdKodK1dK_ .(30
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e From this wave packet (30), one can as well proceed to
calculate the expectation value of the spatial volume of the
universe. This reads

(ABC)(T) = (*)(T)
_ ),

Volume expectation, < ABG »

L Time, T
-1.0 -0.5 oo 05 1.0

o It clearly tells us that at the beginning of time, that is at
T = 0, the universe had a finite volume. The figure

dlsplays the Varlatlon of the volume expectation of the




e Here now let’s study the behavior of the probability density
function, that is

P = vy LIJU‘}) (32)

wp

Behavior of the probability density function with respect to ¢ and Zj.
We plot for a particular value of the time parameter T = 0, with the
other constant values A =1 and m = 2.
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